AEDC-TSR-78- V15 JUNE 1978

TEST RESULTS FROM THE NASA/ROCKWELL INTERNATIONAL SPACE SHUTTLE INTEGRATED VEHICLE TEST (IH 85)
CONDUCTED IN THE AEDC-VKF TUNNEL A

ر در دول محمومها کي مهاي چ اخت

Kenneth W. Nutt
ARO, Inc., AEDC Division
A Sverdrup Corporation Company
von Kármán Gas Dynamics Facility
Arnold Air Force Station, Tennessee

Period Covered: April 19-26, 1978

je? o f 16

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

Reviewed by:

ERVIN P. JASKOLSKI, Capt, USAF

Test Director, VKF Division
Directorate of Test Operations

Approved for Publication: FOR THE COMMANDER

CHAUNCEY D. SMITH, JR, L. Colonei, JSAF

Director of Test Operations
Deputy for Operations

Prepared for:

Johnson Spac Center (NASA-JSC)(ES3)

Houston, TX

ARNOLD ENGINEERING DEVELOPMENT CENTER
AIR FORCE SYSTEMS COMMAND
ARNOLD AIR FORCE STATION, TENNESSEE

UNCLASSIFIED

REPORT DO	READ INSTRUCTIONS BEFORE COMPLETING FORM									
AEDC-TSR-78-V15										
	NASA/Rockwell Internation ted Vehicle Test (IH 85) -VKF Tunnel A	Final Report Period Covered April 20, 1978 6. PERFORMING ORG. REPORT NUMBER								
7. AUTHOR(*) (10) Kenneth W. Nutt ARO, Company	Inc., a Sverdrup Corporat	8. CONTRACT OR GRANT NUMBER(*)								
PERFORMING ORGANIZATION Arnold Engineering De Air Force Systems Com Arnold Air Force Stat	velopment Center mand ion, TN 37389	Program Element 921E 01								
Johnson Space Center Houston, TX	June 78 13. NUMBER OF PAGES.									
14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) Unclassified 15. DECLASSIFICATION DOWNGRADING 3CHEDULE N/A										
17. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if different from Report) 18. SUPPLEMENTARY NOTES Available in DDC 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Heat Transfer Space Shuttle Supersonic Testing Interference Heating										
								Tests were conduct vective heat-transfer during simulated firs test model was a 0.01 Vehicle 5 configurati Vehicle and the Orbit The tests were conduct	-rate distributions on the tand second stage conditions on the 75-scale model (60-0TS), of on Model configurations er/External Tank with the ted at Mach numbers 3 and	onic Wind Tunnel A to obtain con- e Space Shuttle Integrated Vehicle ions of the flight profile. The f the Rockwell International tested included the Integrated Solid Rocket Boosters removed. 4 using the thin-skin thermo- les of attack of 0, £2.5, and
								- 1 JAN 73	UNCLASSIFIE	08 28 127

UNCLASSIFIED

\$\frac{1}{2}5\$ deg and at yaw angles of 0, \$\frac{1}{2}3\$, \$\frac{1}{2}4.5\$, \$\frac{1}{2}5\$, \$

ACCESSION TO ANOTHER POLYMAN CO

UNCLASSIFIED

CONTENTS

		Page
	NOMENCLATURE	2
1.0		6
2.0		·
0	2.1 Test Facility	6
	2.2 Test Article	7
	2.3 Test Instrumentation	,
		-
		7
2.0	2.3.2 Test Data	8
3.0		_
	3.1 Test Conditions	8
	3.2 Test Procedure	
	3.2.1 General	8
	3.2.2 Data Acquisition	9
	3.2.3 Data Reduction	9
	3.3 Adiabatic Wall Temperature	11
	3.4 Uncertainty of Measurements	
	3.4.1 Test Conditions	13
	3.4.2 Test Data	14
4.0	DATA PACKAGE PRESENTATION	14
	REFERENCES	15
	APPENDIXES	
	AFFENDIAES	
A.	ILLUSTRATIONS	
Figu	ure .	
1.	Tunnel A	17
2.	Sketch of the Space Shuttle Integrated Model	18
3.		-
٥. 4.	External Tank Nose Tip Configuration	19
	Model Installation in Tunnel A	20
5.	Typical Heat-Transfer Data Tabulation	21
6 -	Comparison of External Tank Data for the OTS	
	Configuration with Theory and Results from a Previous	
_	Test at Mach 3.01	22
7.	Comparison of External Tank Data for the OTS Config-	
	uration with Theory and Results from a Previous	
	Test at Mach 4.02	23
в.	TABLES	
-•		
Tab:	<u>le</u>	
1.	Thermocouple Constant Sets	25
2.		37
3.	Equations for Calculating Local Surface Angle of	37
٦.	Attack on the Orbiter Model	1.4
	wereck on the Albitel Bodel	41

NOMENCLATURE

^a 1, ^a 2, ^a 3	Denote constant terms used to calculate R
ALPHA-MODEL, a	Model angle of attack, deg
ALPHA-PREBEND	Sting prebend, deg
ALPHA-SECTOR, as	Tunnel sector angle, deg
Ъ	Model wall thickness, ft
CONSTANT SET	Identification of thermocouple hookup (see Table 1)
c _p	Model wall specific heat, $\frac{Btv}{1bm-{}^{\circ}R}$
C.R.	Center of rotation
DELTABF, DABF	Body flap deflection angle, deg
DELTAE, DAF	Elevon deflection angle, deg
DELTASB, DASB	Speed brake deflection angle, deg
DTWDT, dTW/dt	Derivative of the model wall temperature with respect to time, °R/sec
FS	Full scale
GROUP	Identification number for each tunnel injection
H(TAW)	Heat-transfer coefficient,
	QDOT , Btu TAW - TW ft ² -sec°R
H(TO)	Heat-transfer coefficient,
	TO - TW ft ² -sec-°R
н(0.95то)	Heat-transfer coefficient,
	QDOT , Btu (0.95TO)-TW ft ² -sec-°R
	(U.YSTO)-TW ftsecR
H(RTO)	Heat-transfer coefficient,
	QDOT Btu (RTO)-TW ft ² -sec-*R
	(KIO)-IM II -86C- K

HREF, HREF-FR	Reference heat-transfer coefficient based
	on Fay-Riddell theory, Btu/ft ² -sec-°R
HREF =	$\frac{8.17173(P01)^{0.5}(MU-0)^{0.4}[1-(P-INF/P01)]^{0.25}}{(RN)^{0.5}(T0)^{0.15}}$
x	[0.2235 + 0.0000135 [TO + 560]]
L	Axial reference length, in. (see Fig. 2)
^M e	Mach number at boundary layer edge
MACH NO., M _∞	Free stream Mach number
MODEL	Model configuration
MU-O	Viscosity conditions based on stagnation
	temperature, lbf-sec/ft ²
MU-INF	Free-stream viscosity, lb-sec/ft ²
OTS	Orbiter, external tank, and both solid rocket boosters
от	Orbiter and external tank
P-INF, p _∞	Free-stream pressure, psia
PO, p _o	Tunnel stilling chamber pressure, psia
PO1	Stagnation pressure downstream of a normal shock, psia
QDOT	Heat-transfer rate, wbc _p (DTWDT), Btu/ft ² -sec
Q-INF, q_{∞}	Free-stream dynamic pressure, psia
r	Recovery factor
R	Radius or analytical temperature ratio, TAW/TO

RN Reference nose radius, (0.0175 ft)

RE/FT Free-stream Reynolds number per foot, ft⁻¹

RHO-INF Free-stream density, 1bm/ft³

ROLL-MODEL Model roll angle, deg

SRB Solid Rocket Booster STFR Theoretical stagnation point Stanton number for a 0.0175-ft (1 scale foot) radius sphere calculated from Fay-Riddell theory STFR = (RHO-INF)(V-INF)[0.2235 + 0.0000135(TO + 560)](32.174)SWITCH POSITION Designates the position of the thermocouple selector switch Time from start of model injection cycle, T Temperature, °R TAW Adiabatic wall temperature, °R TC-NO, T/C Thermocouple T-INF Free-stream temperature, °R Tunnel stilling chamber temperature, °R TO, T TW Model wall temperature, °R V-INF Free-stream velocity, ft/sec Model wall density, lbm/ft3 X Axial coordinate, in. (see Fig. 2) YO Orbiter lateral coordinate, in. (see Fig. 2) X/L Thermocouple axial location as a ratio of model length from model nose tip YAW Model yaw angle, deg β Angle of sideslip, equal to negative yaw angle, deg Ratio of specific heat Local surface angle of attack, deg Combination of model roll angle and

External tank angular measurement, dag

 θ or ψ , deg

θ, THETA

λ	Local model deflection angle, deg
ф, РНІ	Orbiter angular measurement, deg
ψ, PSI	Sclid rocket booster angular measurement, deg
Subscripts	
e	Flow properties at boundary layer edge
1	Initial conditions
0	Orbiter
s	Solid Rocket Booster
T	External tank

Free-stream flow properties

1.0 INTRODUCTION

The work reported herein was conducted at the Arnold Engineering Development Center (AEDC), Air Force Systems Command (AFSC), by ARO, Inc., AEDC Division (a Sverdrup Corporation Company), contract operator of AEDC, AFSC, Arnold Air Force Station, Tennessee. The work was sponsored by the Johnson Space Center (NASA-JSC(ES3)), Houston, Texas, under Program Element 921E-01. Rockwell International (RI), Space Division, Downey, California was responsible for test planning and data analysis. The project monitor for NASA-JSC(ES3) was Mrs. Dorothy B. Lee and the test engineer for Rockwell International was Mr. Jim Cummings.

The test was conducted in the 40-in. Supersonic Wind Tunnel (A) at the von Karman Gas Dynamics Facility (VKF) during the period April 19-26, 1978, under ARO Project Number V41A-W5. Data were recorded at Mach numbers 3 and 4 at free stream unit Reynolds numbers of 3.7 x 10^6 and 4.1 x 10^6 per foot, respectively. The model angle of attack varied from -5 to 5 deg with model yaw angles varying from -9 to 9 deg. Two model configurations; the OTS configuration composed of the fully integrated model with the orbiter, external tank (ET) and both solid rocket boosters (SRB), and the OT Configuration consisting of the orbiter and the external tank, were tested.

The objective of the test was to obtain updated supersonic heat-transfer rate distributions on the Space Shuttle Vehicle configuration VC72-000002F during simulated first and second stage conditions. Data were recorded from instrumentation on the orbiter, external tank and both solid rocket boosters.

Copies of all the detailed test logs have been transmitted to Rockwell International. Three copies of the final tabulated data are being transmitted with this report to Rockwell International. A data tape will be transmitted to Christer Corporation Space Division for their analysis under the Dataman contract. Inquiries to obtain copies of the test data should be directed to NASA-JSC(ES3), Rouston, Texas 77058. A microfilm record has been retained in the VKF at AEDC.

2.0 APPARATUS

2.1 TEST FACILITY

Tunnel A is a continuous, closed-cf-crit, variable density wind tunnel with an automatically driven flexible-plate-type nozzle and a 40-by 40-in. test section. The tunnel can be operated at Mach numbers from 1.5 to 6 at maximum stagnation pressures from 29 to 200 psia, respectively, and stagnation temperatures up to $750^{\circ}R$ ($M_{\infty}=6$). Minimum operating pressures range from about one-tenth to one-twentieth of the maximum at each Mach number. The tunnel is equipped with a model injection system which allows removal of the model from the test section while the tunnel remains in operation. A description of the tunnel and airflow calibration information may be found in Ref. 1. A schematic view of Tunnel A and the model injection system is shown in Fig. 1, Appendix A.

2.2 TEST ARTICLE

The 60-07S model is a 0.0175-scale thin-skin thermocouple model of the Rockwell International Vehicle 5 configuration. The model populated by Rockwell International. A sketch of the Space Shutt's ance, ted model is shown in Fig. 2. The model was constructed of 17-4 at stain. I steel with a nominal skin thickness of 0.030 in. at the instrumented areas. All thermocouples were spot-welded to the thin skin inner surface.

Data were obtained for the orbiter, external tank, and both the right and left SRB (as viewed by the pilot). Two model configurations were investigated during this test. The fully integrated model with the orbiter, external tank, and both the right and left SRB was designated the OTS configuration. The OT configuration consisted of only the orbiter and external tank combination with the forward and aft SRB attachments installed on the external tank. The model configurations are listed under the model headings in the tabulated data.

The spike nose tip (10-deg sharp cone) was installed on the external tank, Fig. 3. The external tank reference length of 32.295 in. in model scale is based on the tank length with the nipple nose attached. This reference length was retained for consistent values of X/L.

The inboard elevons on the orbiter were deflected down 10-deg throughout the test. The orbiter speedbrakes and body flap were set at zero deflection.

Boundary layer trips were used on the orbiter and on each SRB to generate a turbulent boundary layer. The trips consisted of 0.020-in-diam balls spaced on 0.060-in. centers around a form fitted steel strip. The trips were located at an X/L of 0.04 on the orbiter nose and 0.19 on the nose of each SRB. The mose shape on the external tank effectively tripped the boundary layer.

The installation of the OTS configuration in Tunnel A is illustrated in Fig. 4.

2.3 TEST INSTRUMENTATION

2.3.1 Test Conditions

Tunnel A stilling chamber pressure is measured with a 15-, 60-, 150-, or a 300-psid transducer referenced to a near vacuum. Based on periodic comparisons with secondary standards, the accuracy (a bandwidth which includes 95 percent of the residuals, i.e. 20 deviation) of these transducers is estimated to be within ±0.2 percent of reading or ±0.015 psi, whichever is greater. Stilling chamber temperature is measured with a copper-constantan thermocouple with an accuracy of ±3°F based on repeat calibrations (20 deviation).

2.3.2 Test Data

The model temperatures were measured with iron-constantan thermocouples with an estimated uncertainty of ±0.5 percent. Data from over 1000 thermocouples were recorded during the test. A Beckman 210 analog-to-digital converter was used in conjunction with a Digital Equipment Corp. (DEC) PDP-11 Computer and a DEC-10 Computer to record the temperature data.

Data from a maximum of 97 thermocouples can be recorded during each tunnel injection. Twelve sets of thermocouples were required to accommodate the large number of thermocouples on this test. These sets are called Constant Sets in the tabulated data. A list of the twelve Constant Sets is given in Table I. This list includes all of the thermocouples that were installed for the test. Several of the listed thermocouples were determined to be inoperative and these have been omitted from the tabulated data. A total of three Constant Sets could be connected at one time. A three position selector switch was used to select the desired Constant Set for each injection. A new series of three Constant Sets could be readily connected using quick disconnect thermocouple plugs with 15 thermocouples per plug.

The dimensional locations of the thermocouples at each position are given in Table I. The angular reference system for the thermocouples is shown in Fig. 2. It is important to note that the top centerline of the external tank and bot! SRB's is the 0-deg location. This agrees with the reference system used in the IH-72 test. The bottom centerline was used as the 0-deg position on the IH-41A, and IH-41B tests.

3.0 TEST DESCRIPTION

3.1 TEST CONDITIONS

The test was conducted at the following nominal conditions:

MACH NO.	PO, psia	TO, °R	HREF, sec-ft ² -*R	RE/FT
3.01	37	720	0.055	3.8 x 10 ⁶
4.02	70	720	0.050	4.1 x 10 ⁶

Data were obtained at angles of attack of 0, ± 2.5 , and ± 5 deg and at yaw angles (- β) of 0, ± 3 , ± 4.5 , ± 5 , ± 7.5 , and ± 9 deg.

A test data summary showing all configurations tested and the variables for each is presented in Table 2.

3.2 TEST PROCEDURE

3.2.1 General

In the VKF continuous flow wind tunnels (A, B, C), the model is mounted on a sting support mechanism in an installation tank directly underneath the

tunnel test section. The tank is separated from the tunnel by a pair of fairing doors and a safety door. When closed, the fairing doors, except for a slot for the pitch sector, cover the opening to the tank and the safety door seals the tunnel from the tank area. After the model is prepared for a data run, the personnel access door to the installation tank is closed, the tank is vented to the tunnel flow, the safety and fairing doors are opened, and the model is injected into the airstream. After the data are recorded, the model is retracted into the tank and the sequence is reversed with the tank being vented to atmosphere to allow access to the model in preparation for the next run.

3.2.2 Data Acquisiton

The initial step prior to recording the test data was to cool the model uniformly to approximately 60°F with cooled high pressure air. This was accomplished by providing chilled air from a vortex generator (Hilsch vortex tube, Ref. 2) to a retractable cooling manifold. With the model attitude set at zero pitch the cooling manifold was positioned around the model. Once the cooling cycle was complete the cooling manifold was retracted and the model attitude was established prior to tunnel injection. The model was then injected into the runnel. Then the model reached tunnel centerline, the model was immediately translated forward to clear an area of tunnel induced shock impingement. The thermocouple outputs were scanned approximately 15 times per second starting prior to model injection into the airstream and continuing about 5 seconds after the model reached centerline. After each injection, the cooling cycle was repeated to cool the model to an isothermal state.

3.2.3 Data Reduction

The reduction of thin-skin thermocouple data normally involves only the calorimeteric heat balance which in coefficient form is:

$$H(TAW) = wbc p \frac{dTW/dt}{TAW-TW}$$
 (1)

For this test a value of 0.55 TO was selected for TAW and equation (1) can be written

$$H(0.95T0) = wbc_p \frac{dTW/dt}{0.95T0-TW}$$
 (2)

Radiation and conduction losses are neglected in this heat balance and data reduction simply requires evaluation of dTV/dt from the temperature-time data and determination of model material properties. For the present tests radiation effects were negligible; however, conduction effects can be significant in several regions of the models. To permit identification of these regions and to improve evaluation of the data, the following procedure was used.

Separation of variables and integration of Equation (2) assuming constant w, b, $\mathbf{c}_{\rm n}$, and TO yields

$$\frac{H(0.95T0)}{\text{wbc}_{p}} (t - t_{i}) = \ln \left[\frac{0.95T0 - TW_{i}}{0.95T0 - TW} \right]$$
 (3)

Differentiation of Eq. (3) with respect to time gives

$$\frac{H(0.95T0)}{wbc_{p}} = \frac{d}{dt} \ln \left[\frac{0.95T0 - TW_{1}}{0.95T0 - TW} \right]$$
 (4)

Since the left side of Eq (4) is a constant, plotting $\ln \frac{0.95\text{TO} - \text{TW}_{1}}{0.95\text{TO} - \text{TW}}$

versus time will give a straight line if conduction is negligible. Thus, deviation from a straight line can be interpreted as conduction effects.

The data were evaluated in this manner, and generally a linear portion of the curve was used for all thermocouples. A linear least-square curve fit of ln [(0.95TO-TW,)/(0.95TO-TW)] versus time was applied to the data. The data reduction time was delayed for all thermocouples that were influenced by the tunnel induced shock until they had cleared this region. The thermocouples on the external tank and both SRB's with an X/L greater than 0.9 were reduced starting 3.9 seconds after centerline. The thermocouples with an X/L greater than 0.2 on the external tank and an X/L greater than 0.113 on each SRB but not exceeding an X/L of 0.9 were reduced starting at 2.6 seconds after centerline. The remaining thermocouples on the external tank and each SRB were reduced starting at centerline. The thermocouples on the orbiter with an X/L greater than 0.055 were reduced starting at 2.6 seconds after centerline. All other thermocouples on the orbiter were reduced starting at centualine. The curve fit extended for a time span which was a function of the heating rate, as shown on the following list.

Range	No. of Points (Fit Length)
$\frac{dTW}{dt} > 32$	5
$16 < \frac{\mathrm{dTW}}{\mathrm{dt}} \le 32$	7
$8 < \frac{\mathrm{d}TW}{\mathrm{d}t} \le 16$	9
$4 < \frac{dTW}{dt} \le 8$	13
$2 < \frac{dTW}{dt} \le 4$	17
$1 < \frac{dTW}{dt} \le 2$	25
$\frac{dTW}{dt} \leq 1$	41

The above time spans were adequate to keep the evaluation of the right side of Eq. (4) within the linear region. The linearity of the fit was substantiated by visual inspection of the cases in question. This visual check of the data was done on the VKF graphics terminal. Strictly speaking, the value of c for the material was not constant, and the following relation

$$c_p = 0.0797 + (5.556 \times 10^{-5})$$
 TW, (17-4 PH stainless steel) Btu/lbm°R (5)

was used with the value of TW at the midpoint of the curve fit. The maximum variation of c_p over any curve fit was less than 1.2 percent. The value of density used for 17-4 PH stainless steel was

$$w = 490.0 \text{ 1bm/ft}^3$$

3.3 ADIABATIC WALL TEMPERATURE

The maximum available tunnel stagnation temperature for each Mach number tested is listed in Section 3.1. With these relatively low stagnation temperatures, the difference between the model wall temperature and recovery temperature was generally small in regions of peak heating. This small temperature difference causes the calculation of the heat-transfer coefficient to be very sensitive to deviations from the actual adiabatic wall temperature. Two values of the heat-transfer coefficient have been calculated based on an assumed constant recovery temperature, namely H(TO) and H(0.95TO). To account for changes in the recovery temperature a third value of the heat-transfer coefficient has been tabulated based on an analytical temperature ratio, R = TAW/TO.

The analytical method for determining R was developed by Rockwell International and has been used to calculate H(RTO). In this method, the following relationships were assumed:

$$R = \frac{TAW}{TO} \tag{6}$$

and

$$TAW = T_e \left(1 + \frac{Y-1}{2} r M_e^2\right) \tag{7}$$

r = 0.898 for turbulent f' w

with r being the recovery factor and the subscript e identifying local properties at the boundary-layer edge. From these relationships, the temperature ratio can be defined as:

$$R = \frac{1 + 0.2 \text{ m}_e^2}{1 + 0.2 \text{ M}_e^2} \tag{8}$$

which is a function of the recovery factor and the local Mach number. The local Mach number can be written

$$\mathbf{M}_{\mathbf{g}} = \mathbf{M}_{\mathbf{g}} \left(\mathbf{M}_{\mathbf{w}}, \delta \right) \tag{9}$$

where ∞ identifies the free-stream property and δ is the local surface angle of attack.

The local Mach number can be approximated by using tangent cone flow theory, and was used in Equation (8) to give R as a function of M_{∞} and δ . Calculations of R were made for several values of M_{∞} and δ , and the results were curve fit by Rockwell International. The following equation resulted

$$R(M_{\infty},\delta) = a_1 + a_2 \cdot (\sin \delta)^{a_3}$$
 (10)

where a_1 , a_2 , a_3 are constants for a particular Mach number. The values of a_1 , a_2 , a_3 used for this test are:

M _∞	<u>a</u> 1	a ₂	a_3_
3.0	0.9345	0.1004	2.165
4.0	0.922	0.1004	1.965

Standard matrix techniques, Ref. 3, were used to derive the following relations for 5, as applicable to the model geometry.

$$\delta = \arcsin (\sin \lambda \cos \alpha_g + \cos \lambda \cos \epsilon \sin \alpha_g), \text{ deg } (11)$$
 where
$$\epsilon = \text{roll model} + (\theta + 180), \text{ deg; for external tank}$$

$$\epsilon = \text{roll model} + (\psi + 180), \text{ deg; for left SRB}$$

$$\epsilon = \text{roll model} + (180-\psi), \text{ deg; for right SRB}$$

Additional information would have been required pertaining to the directional cosines at each thermocouple location to calculate δ on the orbiter. This would be necessary since the orbiter model is not symmetrical about the axial centerline. However, this additional information was not available so a modified approach was selected. The equations for calculating δ for the various thermocouples on the orbiter model are shown in Table 3.

The method used to calculate the analytical temperature ratio, R has been applied to all of the tabulated data. The method represents a simplified approach to present a more realistic evaluation of TAW. However, in regions of separated flow or complex interaction, the values calculated for R may no longer apply and should be used with extreme care.

3.4 UNCERTAINTY OF MEASUREMENTS

3.4.1 Test Conditions

The accuracy of the basic measurements (p_0 and T_c) was discussed in Section 2.3. Based on repeat calibrations, these errors were found to be

$$\frac{\Delta p_o}{p_o} = 0.002 = 0.2x, \frac{\Delta T_o}{T_o} = 0.005 = 0.5x$$

Uncertainties in the basic tunnel parameters p_0 and T_0 (see Section 2.3) and the two-sigma deviation in Mach number determined from test section flow calibrations were used to estimate uncertainties in the other free-stream properties, using the Taylor series method of propagation, i. e.

$$(\Delta F)^2 = \left(\frac{\partial F}{\partial x_1} \Delta x_1\right)^2 + \left(\frac{\partial F}{\partial x_2} \Delta x_2\right)^2 + \left(\frac{\partial F}{\partial x_3} \Delta x_3\right)^2 \dots + \left(\frac{\partial F}{\partial x_n} \Delta x_n\right)^2$$
(11)

where ΔF is the absolute uncertainty in the dependent parameter $F = F(X_1, X_2, X_3, \dots, X_n)$ and X_n is the independent parameter (or basic measurement). ΔX_n is the uncertainty (error) in the independent measurement (or variable).

The computed uncertainties in the tunnel free-stream conditions are summarized in the following table.

	Uncertai	Int". (±) per	rcent of acti	ual value
M	M _∞	P _∞	Q.,,	RE/FT
3.0	0.6	2.6	1.4	1.2
4.0	0.4	2. ^	1.5	1.2

The uncertainty in model angle of uttack (ALPHA-MODEL), as determined from tunnel sector calibration and consideration for possible sting deflections, is estimated to be ±0.5 deg.

3.4.2 Test Data

Estimated uncertainties in w, b, c in Eq. (2) combined with computed uncertainties for (dTW/dt)/(0.95TO-TW) in the Taylor series method of error

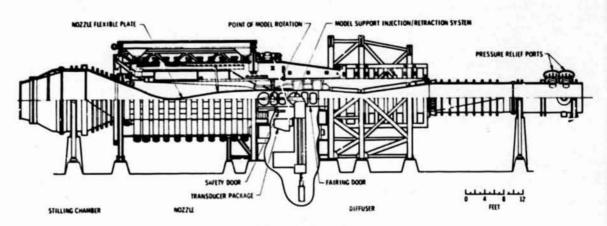
propagation gave the following uncertainties in the heat-transfer coefficient for the listed range of values:

H(0.95TO), Btu	
ft ² -sec°R	Uncertainty, percent(±)
10 ⁻²	9.5
10 ⁻³	11
10 ⁻⁴	12

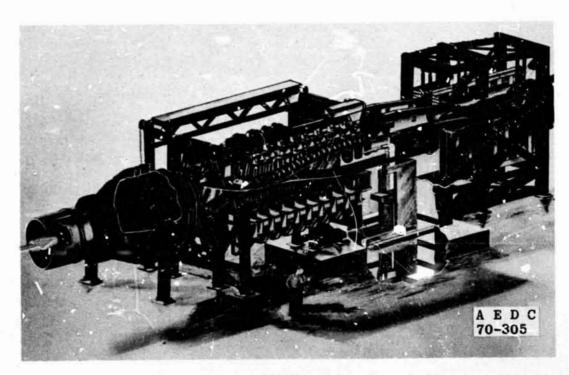
The data were deleted from the results for thermocouples which consistently exceeded the above quoted uncertainties.

4.0 DATA PACKAGE PRESENTATION

Convective heat-transfer-rate distributions were obtained on a 0.0175-scale model of the Space Shuttle Integrated Model. Typical data tabulations are illustrated in Fig. 5. The final tabulated data were transmitted with this report to NASA-JSC and Rockwell International.


Representative data from the top centerline of the external tank $(\theta = 0 \text{ deg})$ are presented for a free atream Mach number of 3.01 and 4.02 in Figs. 6 and 7, respectively. These data were obtained with the model in the OTS configuration. The location of the orbiter nose and each SRB nose is located on each figure in terms of the X/L for the external tank. The theoretical data to: each Mach number is based on the external tank alone with no protuberances. The theoretical data were derived by using calculations described in Refs. 4 and 5. In general, the data are in good agreement with the theoretical values on the ogive section of the external tank at both Mach numbers. In this region the flow is not disturbed by the other model components and closely approximates the assumptions stated for the theoretical calculations. The trend toward the junction αf the nose ogive with the cylindrical body has been consistently observed on the external tank but is not adequately predicted by the theory. The data agreement with the data from a previous test, (IN-72) is generally very good for both Mach numbers. The agreement with theovetical heat-transfer-rates and with previous data is considered as edequate for validation of the basic test results.

REFERENCES


- 1. Test Facilities Handbook (Tenth Edition) "von Karman Gas Dynamics Facility," Arnold Engineering Development Center, May 1974.
- 2. Hilsch, R. "The Use of the Expansion of Gases in a Centerifugal Field as a Cooling Process." The Review of Scientific Instruments, Vol. 18, No. 2, February 1947.
- 3. Trimmer, L. L. and Clark, E. L. "Transformation of Axes Systems by Matrix Methods and Applications to Wind Tunnel Data Reduction." AEDC-TDR-63-224, October 1963.
- 4. DeJarnette, Fred R. "Calculation of Inviscid Surface Streamlines on Shuttle-Type Configurations, Part I Description of Basic Method." NASA CR-111921, August 1971.
- DeJarnette, Fred R. and Jones, Michael H. "Calculation of Inviscid Surface Streamlines and Heat Transfer on Shuttle Type Configurations, Part 2 - Description of Computer Program." NASA CR-111922, August 1971.

APPENDIX A

ILLUSTRATIONS

a. Tunnel assembiy

b. Tunnel test section Fig. 1 Tunnel A

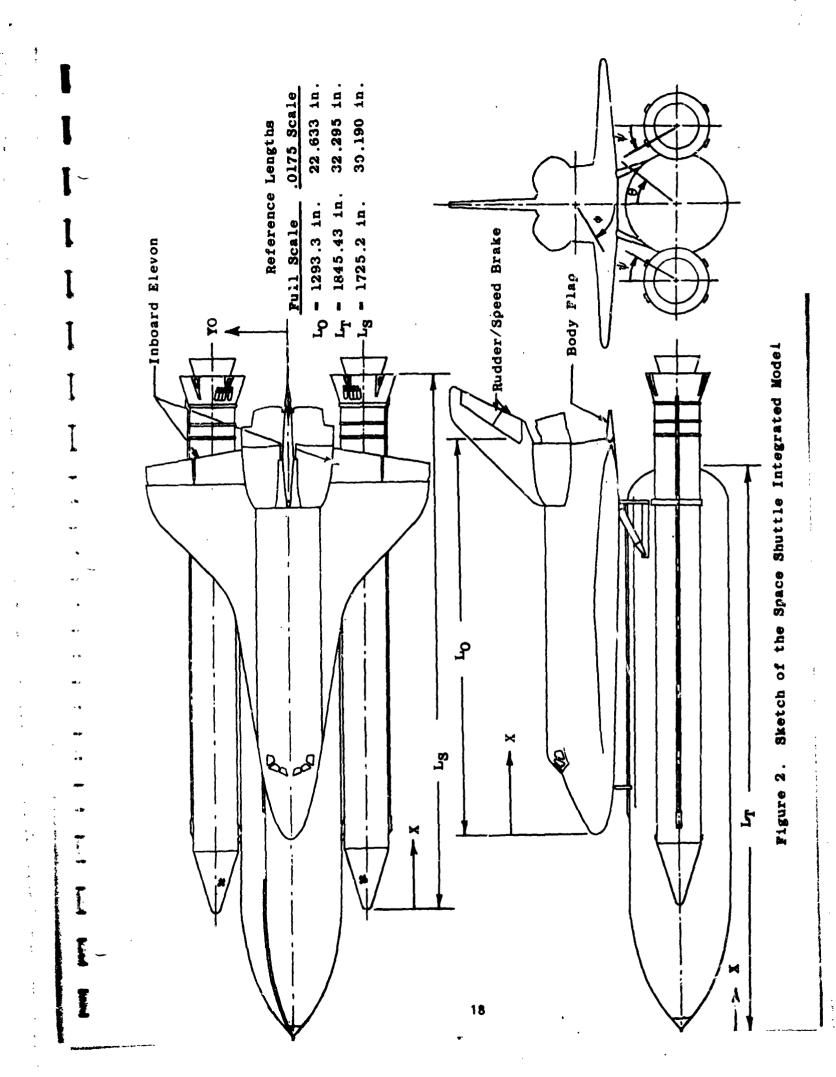


Fig. 3 External Tank Nose Tip Configuration

E

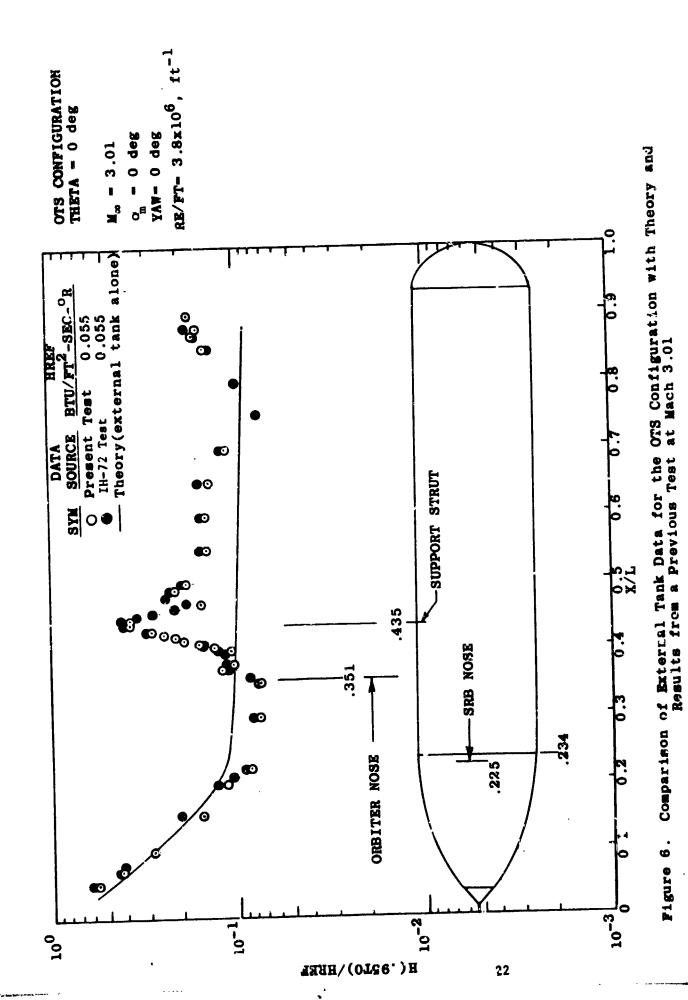
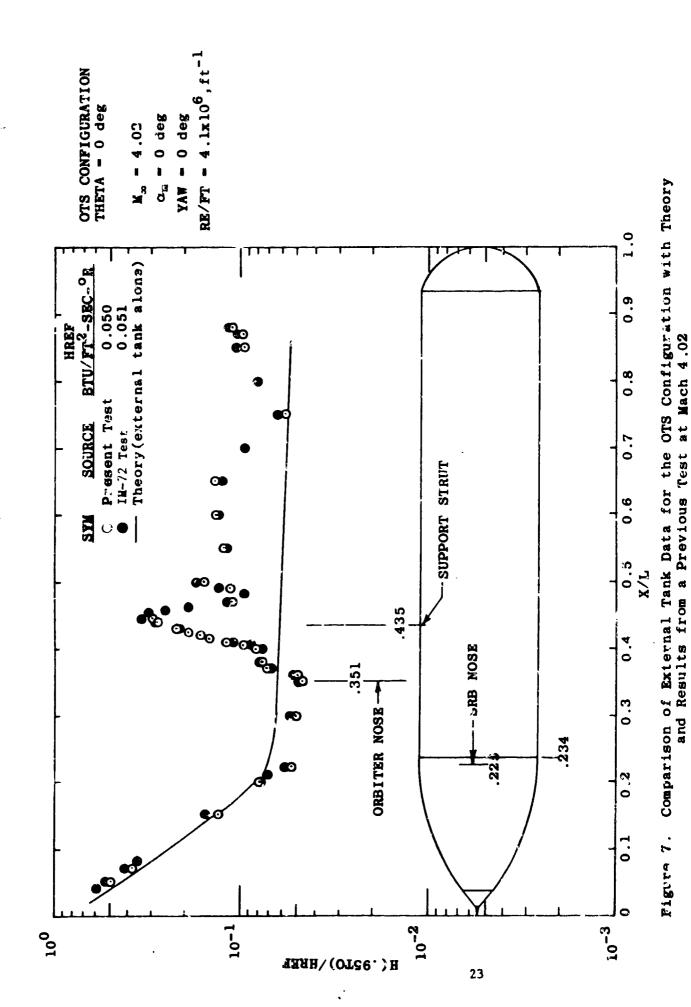

I

Figure 4. Model Installation in Tunnel A


ABU, INC. A BULTURE VUB LARBA ARROLD AL	, 0.3 %	ALUC DIVILATUR UMPUMATION CU AB "INAMICS F UMCE STATION" MERTING 1287	COMPANY FACILI F, TERM	11 6381 C								PAINTE PA	UATE COMPUTED & LINE COMPUTED DATE ALCUMPUTED THE ALCUMPED DATE ALC	19-AP6-78 23:30:40 19-APR-70 23:36: 1 V41A-85
400.62	CUMBIANT SET 211	ACOKL CTS		3.01	PU.P81A	10.0EG #		ALPHA-MODEL AL B.02	ALPHA-SLCTUR 0.02	ALPHA-PRESEND 0.		ROLL-HODEL	141 0.00	
1-1m (OCCE) 254-15	7-12F (761A) 0.99	0-18F (FB1A) 6-269		V-1NF (FT-6EC) 2354.	RHO-14F (LBA/FT3) 1.050E-02	77.7	NU-1NF (LB-6EC/FT2) 2.0315-07	KE/PT (FT-1) 3.7788+06	SEE SEE	01.7 5F T.) 02	STFR (M* 0.01	0.0175FT) [-03	641TCM POSITION A	
IMBOAKU DELTAE 10.	IKU DELIASF	bf weltabe	4											
10-110	2	01-01	1779	H(TO)	H(TU)/HREF		H(.95TU)	h(,951u)/ HREF	# # # # # # # # # # # # # # # # # # #	H(410) H	h(KTO)/MM e f		7	
2000	44	11.207	1.658	6.14eE-01			U.213E-01	0.3840	0.9345	0.2486-01	9.4465	0.9370		• :
7007	-	1.00		0.249E-02			0.3936-02	2010.0	577.7	0.4746-02	0.0864	0.9370	• ~	
2630		8.763	32.0				0.723E-02	0.1300	0.9345	0.795E-02	0.1416	0.3550		• (
26 2 Z	552.0	5.445 5.17e	0-119	0.9125.05	0.0924		0.696E-U2 U.632E-02	17110	0.000	0.120E-02	0.124	0.3450	4.00° 4.00° 8.00°	
2093	-	4.24	7				0.4476-02	0.0404	0.9345	0.45E-02	0.0876	0.3700		•
7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		×45.6	116.0	0.578£-02			0.748E-U2	0.1351	. 9345	0.8235 -92	9691.0	9.72.6	23.6700	•
9402	2.4.2		20.0		•		0.453K-02	0.0414	0.9245	7.4498-02		0.3650		• •
		3.633	9.8.0	0.289E-02			0.357L-02	6,0645	0.9345	0.3655-02	0.0695	0.3760	23.0700	•
	DELETE UELETE													
_	Directly 524 6	1.001	104		A840.0		206 - 002	0.0722	0.0345	0.4375-02	0.0789	0.3700		
			0.627				0.4181-02	0.0755	0.9345	0.4516-02	0.0815	0.3540	17.0000	•
	562.7	7.616	1.210	0.#02E-U2	12 0.144		U.105E-U1	0.1693	0.9345	0.1166-01	0.2093	0.400	330.2080	•
2100	525.1	H. Bon	1.337	6.9586-02	0.1710		0.1296-01	0.2326	20.00	0.144E: 31	9.2664	0.4000	326,4500	•
2100			1.414				U-131E-01	6.2366	0.9345	0.1468-01	0.2639	0.4.50		•
2109		7.954	1.280	3			0.122E-01	0.2211	5766.7	0.1376-01	0.2473	0.400	-	•
2110	554.4	7.636	1.04	0.857E=02	12 0.1547 12 6.1176		0.114E-01	0.2050	0.9345	0.9226-02	0.166	9914.9	315.4960	úa
2112		07.0	6.00				0.226E-04	P0000	0.9345	0.2456-04	0.0004	0.6350		•
2113		3.342		7			20-20A-0	0.0196	5776.7	0.5516-02	5670.0	0.020		•
51 . 5 7	575.0	3.156	6.921	0.373E-02	0.0674		0.541E-02	0.040	0.9145	20-27-07	101.0	977.0)65. 6. 9	•
	•	3.227				_	.4686-02	9780.0	6.8345	0.5104-02	0.0936	0.0200		•
	570.1 10.1	3.900	•. • 5	0.452E-42	0.0017		0.6416-02	0.1005	9.0348	•.649E-02	0.1200	0.0380	301.5000	•

(

NOTE: THIS IS A TYPICAL PAGE FROM A MULTIPLE PAGE TABULATION Typical Heat-Transfer Data Tabulation Figure 5.

₹

APPENDIX B

TABLES

TABLE 1 THERMOCOUPLE CONSTANT SETS EXTERNAL TANK

~-	Ch.	T/C	X/L	Θ		Ch.	T/C	X/L	θ		Ch. No.	T/C	X/L	е
	1	615	.38	0		34	649	.95	0]	66	69 6	.926	1.7
	2	616	.385			35	650	.35	11.25		67	OPEN		•
	3	617	.39			36	651	.36			68	OPEN	_	ĺ
	4	618	.395			37	652	.37			69	699	.05	29.8
	5	619	.40			38	653	.375			70	700	.07	
	6	620	.405			39	654	.38			71	701	.10	
	7	621	.41			40	655	.385			72	702	.15	
	8	622	.415			41	656	.39			73	703	.20	
	9	62 3	.42			42	657	.395			74	704	.30	·
ì	10	624	.425			43	6 58	.40			75	705	.35	
	11	625	.43			44	659	.405			76	706	.375	
ł	12	626	.44			45	660	.41			77	707	.50	
İ	13	627	,445		l	46	676	.85			78	708	.60	
ļ	14	628	.45		I	47	677	.86			79	709	.70	
İ	15	629	.455		1	48	678	.87			80	710	.80	
~	16	630	.46		1	49	679	.88	{		81	711	.87	
ĺ	17	631	.47		1	50	680	.89			82	712	.926	¥
}	18	632	.48		- 1	51	681	.90		1	83	OPEN		
Ì	19	€33	.49			52	682	.91			84	OPEN	- 1	
	20	634	.50			53	683	.926		ł	85	715	.05	37.7
	21	635	.55	1 1		54	684	.95	Y	- [86	716	.07	
	22	636	.60		į	55	685	.33	17		87	717	.10	
- 1	23	637	.65		Į	56	686	.34		ĺ	88	718	.15	
.	24	638	.70		- 1	57	687	.35	1 1		89	719	.20	
	25	639	.75			58	688	.36	} }	ĺ	90	720	.30	
	26	640	.80			59	689	.37			91	721	.35	
	27	641	.85		i	60	690	.375			92	722	.375	
- [28	642	.86			61	691	.50		Ì	93	723	.50	
	29	643	.87			62	692	.60		ĺ	94	724	.60	
.	30	644	.88			63	693	.70		1	95	725	.70	
۱ ۱	31	645	.89		1	64	694	.80		- 1	96	726	.80	
4	32	646	.90			65	695	.87	* }		97	727	.87	*
-	33	648	.926	Y	-	ļ	1	1		.			ļ	
, İ		j	j	- 1	-	1	1	1	1		}	1		į
L			<u>. </u>		1					. L			L	

TABLE 1. Continued EXTERNAL TANK

-		·	-								
Ch		T/C		X/L			θ			C N	
	1	728	-	.92	6	3	7.7			34	4
	2	OPE	4							3	5
	3	OPE	1							36	6
	4	2181	1	.01	-	18	o			3:	7
	5	2182		.01	5					33	3
	6	2183	ł	.02	-[į			39	9
İ	7	2184		.02	5			1		40)
	8	2185		.03		,	Y			41	L
	9	843		.30		29	2.5			42	?
1	0	844	1	.33						43	}
1	1	845		.35						44	:
1	2	846		.37	Ì					45	,
1	3	847		.40						46	
14	4	848		.45	1					47	
1	5	849	l	.50				1		48	
10	6	850		.55						49	
1	7	851	ļ	.60		i				50	
1	3	8 52		.65					•	51	
19	9	853		.70						52	
20		8 54		.75						53	
2	ı [855		.80	İ					54	I
22	2	856		.90		Ý				55	
23	3	857		.84	3	30	5.4			56	l
24	ı	858		.85						57	
25	5	859		.86						58	l
26		860		.87						59	
27	1	861		.88						60	
28		362		.89						61	
29		863		.90						62	
30		864		.91						63	
31		865		.926	ì	Ÿ				64	
32		866		.80	3	1	.3			65	
33		867		.81		Ý					
	L								L		

		CONS	T	ANT	SEI	1.	22	
C N		T/C		х/	'L		θ	
34	4	868		.82		309.3		3
3	5	869		.83		'	1	
36	6	870		.04		31	5	
3:	7	871		.05				
33	3	872		.06	6			
39	9	888		.8	5			
40		889		.86	3			
4]	L	890		.87	7			
42	2	891		.88	3			
43	3	892		.89	9			
44		893	1	.90				
45	5	894	-	.91	ı			
46		895		.92	26			
47	1	896		.95	5	1		
48	Ì	897	1	.42	2	322	2.3	3
49		898		.43	35	j i		
50		899		.45	5			
51		900		.50				
52		901		.60)	- 1		
53		902		.70)			
54		903		.80				ĺ
55		904		.87	'	Y		
56		905	l	.42		33,0	.2	
57		906		.43	5			l
58		907		.45				ı
59	l	908		.50		- 1		
60		909		.60				
61		910		.70		-		
62	İ	911		.80				
63		912		.87	1			
64		913		.93	1			
65		914		.94	\$	Y		
					1			

								_
	Ch . No .			x/I	,		θ	
	66	915		.04		3 3	7.	5
	67	916		.05	,			
I	68	917	1	.06				
l	69	918	j	.07	.		 	
l	70	919		.08	į			
1	71	920		.10	1			
l	72	921	1	.15	.			
l	7 3	922		.20	1			
	74	923		.42				
	75	924		.43	5			
	76	925		.45	.	ł		
	77	926	1	.85	1	-		
	78 .	927		.86				
	79	928	Ì	.87				
	80	929		.88	1	1		
	8 i	930		.89				
,	82	931		.90				
	83	932		.91		Y		
	84	963		.45	\$	34,8	3	١
į	8.5	964		.46				
1	86	965		.47	ĺ			
8	87	966		.48				
8	88	967	ĺ	.49				l
8	39	968		.85				I
9	3a	969		.86	1			I
ç	91	970		.87	l	1		l
9	2	971		.88				ł
ę	93	972		.89				l
ç	4	97ა		.90				l
ç	5	974		.91				l
9	6	975		.926				
9	7	976		.95		*		
_		1						

TABLE 1. Continued EXTERNAL TANK

					_
,	Ch . No .	T/C	X/L	θ	
	1	2186	.02	0	7
	2	2187	.025		1
	3	2188	.03		
	4	985	.04	270	
	5	986	.05	11	
	6	987	.06		
	7	988	.07		
	8	980	.08		
	9	990	.10		
	10	991	.15		
	11	992	.20	1 +	
	12	993	.01	39	
	13	994	.025	*	
į	14	OPEN	[
١	15	995	.03	39	
`	16	OPEN	ļ		
ı	17	OPEN]		
	18	OPEN			
	19	2000	.435	23.07	
	20	2001	. 569		
	21	2002	.703		
Ì	22	2003	.836		
	23	2004	.899	*	
	24	OFEN			
1	25	2005	.476	31.43	
	26	2006	.511		
Ì	27	2007	.546		
ı	28	2003	.581		
	29	2009	.616		
	30	2010	.651	4	
	31	OPEN	ĺ		
1	32	OPEN			
	33	OPEN			
l			. 1		

		_	CONS	1,	****	<u> </u>	- ,			_
	Ci No		T/C		х	/L			θ	
	34		2014		.6	86	[3	31	.4	3
	35		2015	į	.720					
	36	;	2016		.756					
	37	'	2017		.7	90				
	38		2018	1	.8	25				
	39	,	2019		.8	60				
	40		2020		.8	95		1	1	
	41	.	2021		.4	41	32	6	.9	
	42		2022		.4	76				
	43		2023		. 5	11				
į	44		2024		. 5	47				
	4 5		2025		. 5	82				
	46		2026		.6	17				ļ
I	47		2027		.6	5 2				
	48		2028		.6	87				1
	49	. :	2029		.7	23				
	50	1	2030		.7	58				
	51	1	2031		.7	93				
	52	1	2032		.83	28				
	53	1	2033		.80	64				
	54	1	2034		.89	99				
	55	1:	2035	1	.9:	34		Å		
	56	1	203 o		.2	50	4	5		
	57	1	2037		.30	00		į		
	58	1:	2038		.32	25				
	59	2	2039		.35	50				
	60	2	2040		.37	75				1
	61	2	2041		.40	00				
	62	2	2042		.42	0				
	63	2	2043		.42	5				
	64	2	044		.43	36				
	65	2	045		.43	15		۲		
									I	
			i			i			- 1	

								_
Ch No		T/C	!	X/	L		е	
66		2046		.4	4		45	
67		2047	j	.4	•	ĺ		
68		2048		.4	7			
69		2049	ĺ	. 5	3			
70	1	2050	i	.6	ũ	i		
71		2051		. 6	j		İ	
72		2052	1	.7	5			
73		2053		.8	0			
74		2054		.8	3			
75		2055		.8	4	ì		
76		2056		.8	5	1	1	
77		2 05 7	1	.3	6			
78		2058		.8	7	1		
79		2059	1	.8	8			
80	1	2060		.8	9			
81		2061		.9	0			
82	1	2062	ļ	.9	1			
83		2063		.92	26			
84		2064		.9	35		}	
8,5	1:	2065		.94	15	•	Ý	1
86	12	2066		.2	5	36	.32	:
87	12	2067		.30)			1
88	2	2068		.32	35			
89	2	2069		.35	5			1
90	2	2070	l	.37	75			ı
91	2	2071		.40)	1	1	l
92					-			١
93					١			
94								ĺ
95								
96								
97					Ì			١
					,			ı

"ABLE 1. Continued EXTERNAL TANK

Ch.	T/C	X/L	θ
1	2089	.937	352.2
2	2088		289.4
3	2087	1	250.6
4	2090	.355	8.98
5	2091	.360	
6	2092	.365	
7	2093	.370	1
8	2094	.355	23.08
9	2095	.360	
10	2096	.365	
11	2097	.370	j Y
12	2098	.355	20.98
13	2099	.360	
14	2100	.365	
15	2101	. 370	Y
16	2102	.355	17.0
17	OPEN		
18	2104	.400	330.2
19	2105	.405	
20	2106	.410	4
21	2107	.400	326 .8
22	2108	.405	+
23	2109	.405	324.5
24	2110	.410	+
25	2111	.410	315
26	2112	.835	309.3
27	2113	.820	305.4
28	2114	.830	
29	2115	.835	1
30	2116	.820	301.5
31	2117	.830	
32	2118	.835	
33	2119	.840	1

•	CONST	ANT SET	211
Ch No	T/C	X/L	θ
34	2120	.85	301.5
35	2121	.86	
36	2122	.87	1 .
37	2123	.98	
် ပ	2124	.89	
39	2125	.90	Ť
40	OPEN		
41	2127	.925	301.5
42	2128	.935	🛉
43	2129	.82	292
44	2130	.83	
45	2131	.84	
46	2132	.85	
47	2133	.86	
48	2134	.87	
49	2135	.88	
50	2136	.89	
51	2137	.91	
52	2138	.926	
53	2139	.93	7
54	2140	.926	299.4
55	2141		270
56	2142		258
57	2143		250.6
58	2144	1	247.5
59	2145	.93	289.4
60	2146		270
61	2147		258
62	2148		250.6
63	2149	+ 1	247.5
64	2150	.935	270
65	2151	→	258
			1
j	j	Ì	}
1	Ī	1	

Ch.	T/C	A/L	θ
66	2152	.926	33.7
67	2153		31.7
68	2154		23.0
69	OPEN	į	
70	OPEN		
71	OPEN	j	
72	2158	.926	355.2
73	OPEN		j
74	2160	.926	345.2
75	2161		335
76	2162		330.2
77	2163		326 .9
78	2164	1	324.5
79	OPEN		
80	2166	.441	31.4
8 i	2167	.425	337.5
82	2168		345.6
83	2169		354
84	2170		5.6
85	2171	*	17
86	2172	.430	337.5
87	2173		345.6
88	2174		354
89	2175		5.6
90	2176	Y	17
91	600	.04	0
92	601	.05	
93	602	.06	
94	603	.07	
95	604	.08	
96	605	.10	
97	606	. 15	†

TABLE 1. Continued EXTERNAL TANK AND RIGHT SRB

Ch. No.	T/C	X/L	0/ψ*		Ch . No .		X/L	ψ		Ch . No .	T/C	X/L	*
1	607	.20	0		34	1524	.967	225		66	1556	.985	355
2	608	.21			35	1525	.953	216		67	1557	.964	330.7
3	609	.22	·		36	1526	.955	217		68	1558	.978	1
4	610	.30			37	1527	.975	218		69	1559	.982	320
5	611	.35		-	38	1528	.985	219		70	1560	.954	324
6	612	.36			39	1529	.995	220		71	1561	.975	1 1
7	613	.37			40	1530	.954	210		72	1562	.954	336
8	614	.375		ļ	27	1531	.953	156	Ì	73	1563	.982	334
9	1478	.937	263	1	42	1532	.967	157		74	1564	.975	336
10	1500	.953	O		٤.	1533	.980	. 58		75	1565	.982	340
11	1501	.965			4_	1534	.994	159		76	156è	.954	342
12	1502	.975			45	1535	.953	204		77	1567	.964	
13	1503	.985			46	15 3	.967	203		78	1568	.975	*
14	1504	.995	4		47	1537	.980	202		79	1569	.982	350
15	1 5 05	.953	24		48	1538	.994	201		80	1570	.975	353
16	15 06	.967	23		49	1539	.954	210		81	OPEN		
17	1507	.980	22		50	1540	.953	216		82	OPEN		
18	1508	.994	21		51	1541	.967	217		83	OPEN		}
19	1509	.954	30		52	1542	.980	218		84	1574	.971	11
20	1510	.953	36		53	1543	.994	219		85	1575	.978	11
21	1511	.967	323		54	1544	.953	320		86	1		
22	1512	.980	322		55	1545	.965		`	87			
23	1513	.994	321		56	1546	.985	🕴	ļ	88	j	· j	
24	1514	.953	315	i	57	1547	.975	322.5	ı	89	Ì	i	
25	1515	.953	306	ĺ	58	1548	.985	+	ļ	90	j	İ	
26	1516	.967	308		59	1549	.954	330		91	j	ļ	
27	1517	.980		J	60	1550	.995	340]	92	1	j	ı
28	1518	.994	†		61	1551	.985	345		93	- 1	- 1	İ
29	1519	.953	234	- 1	62	1552	.995	+		94		- 1	
30	1520	.965	230		63	1553	.985	350		95		1	I
31	1521	.975			64	1554	.995	+		96		1	
32	1522	.985	+		65	1555	.953	355		97]	-	1
33	1523	.953	225				- (ĺ				1	Ì
		-	ł		İ	ļ		1					
		1		1	1	1	1	- 1	l	- 1		1	

 $^{\star}\theta$ Applies through Channel 8, ψ starts with Channel 9

TABLE 1. Continued ORBITER

								IANI DE	1 233
	Ch.	1 3.74.	X/L	ф		CI No		X/L	•
	1	OPEN				34	301	.843	
	2	227	.60	157.	5	3	5 302	.862	
	3	228	.65			36	OPE	N	
	4	229	.70	1		37	7 304	.862	1
	5	230	.75	🕴		38	305		
	6	234	.40	135		39	306		
	7	238	.60			40	308	.881	
	8	239	.65	1 1		41	309		
ĺ	9	240	.70			42	310		
ı	10	241	.75			43	311	1 1	1
1	11	242	.80	1 *		44	OPEN		1
I	12	392	.60	114		4.5	312	.881	
Ì	13	393	.65			46	315	.920	
l	14	394	.70			47	316		
l	15	395	.75	1		48	317		1
I	16	OPEN			i	49	318		
ı	17	7	.05	0		50	319		•
ı	18	8	.06	1	1	51	1	.939	
ı	19	9	.07			5?	1		
l	20	10	.08			53	322		
İ	21	11	.09			54	323		•
ı	22	12	.10	🛉	İ	55	325	i 🕴	
	23	207	.10	20		56	1	.978	
	24	208	.10	24.5		57	328		
	25	13	. 12	0		58	329		
	2 6	14	.13			59	330		
Ì	27	15	.14			60	331	1 + 1	
	28	16	.15			61	332	.997	•
	29	17	.16			62	333		
	30	18	.17			63	334]]	
	31	19	.18	4		64	335		
	32	299	.843			65	337	1.01	
	33	300	.843						

	Ch.	T/C	X/L	•
	66	338	1.01	
	67	339	1 +	
	68	OPEN		
	69	183	.45	180
	70	185	.55	
j	71	187	.65	
1	72	OPEN		
ı	73	190	.80	180
ļ	74	506	.868	
ı	75	509	.847	
1	76	515	.839	1 1
l	77	521	.858	
	78	522	.870	
l	79	52 3	.837	
1	80	527	.861	
	81	534	.830	
١	82	538	.868	1 .
1	83	542	.833	
1	84	20	.19	0
1	85	21	.20	
1	B6	23	.25	
1	87	24	.30	
ł	88	25	.35	
8	39	26	.40	
9	90	27	.45	
:		28	.50	
	92	29	. 55	
9	93	OPEN		
	94	32	.70	
	5	33	.75	
	96	36	.90	Y
9	7			
		- 1		
			1	

TABLE 1. Continued LEFT SRB

-	T	·		_					•				_
Ch . No .	T/C	X/L	ψ		Ch No	T/C	X/L	ψ		Ch.	T/C	X/L	
1	1000	.115	0		34	1033	.925	45]	6 6	1065	.115	
2	1001	.20			35	1034	.953	50		67	1066	.143	
3	1002	.225			36	1035	.967			68	1067	.171	
4	1003	.25			37	1036	.980			69	1068	.20	1
5	1004	.30			38	1037	.994	1 1		70	1069	.30	ı
6	1005	.40		j	39	1038	0	90		71	1070	.50	
7	1006	.50			40	1039	.002			72	1071	.60	l
8	1007	.55			41	1040	.008			73	1072	.70	
9	1008	.60			42	1041	.050			74	1073	.80	l
10	1009	.65			43	1042	.10			75	1074	.953	l
11	1016	.70			44	1043	.12			76	1124	.177	l
12	1011	.75			45	1.044	.127			77	1125	.20	ı
13	1012	.80			46	1045	.134			78	1126	.30	l
14	1013	.875			47	1046	.173			79	1127	.50	ļ
15	1014	.925			48	1047	.180			80	1128	.60	l
16	1015	.939	¥		49	1048	. 186			81	1129	.70	
17	1016	.953	355		50	1049	.193			82	1130	.80	
18	1017	.967			51	1050	.20			83	1131	.875	
19	1018	.980		- 1	52	1051	.25			84	1132	.925	
20	1019	.994	Y	1	53	1052	.30			85	1133	.953	
21	1020	.115	45		54	1053	.40			86	1134	.967	
22	1021	. 143			55	1054	.50			87	1135	.980	
23	1022	.171			56	1055	.60			88	1136	.994	
24	1023	.20			57	1056	.70		- 1	89	120d	.043	
25	1024	.30		- 1	58	1057	.75		- 1	90	1201	.05	
26	1025	.40		-	59	1058	.80			91	1202	.057	
27	1026	.50			60	1059	.875	.	1	92	1203	.063	
28	1027	.55			61	1060	.925			93	1204	.o9d	
29	1028	.60			62	1061	.953		- 1	94	1205	.10	
30	1029	.65			63	1062	.967		- 1	95	1206	.05	
31	1030	.70			64	1063	.980		- 1	96	1207	.09	
32	1031	.80			65	1064	.994	+	- 1	97	1208	.10	
33	1032	.875	+	ì		İ							
						i							

TABLE 1. Continued LEFT AND RIGHT SRB*

Ch.	T/C	X/L	Ψ		Ch.	T/C	X/L	322 <i>ψ</i>		Ch.	T/C	X/L	*
No.	ļ		<u> </u>	1	No.	 	ļ		-	No.			ļ
1	1209	.05	5		34	1244	.75	225		66	1276	.953	198
2	1210	.09			35	1245		315		67	1277	*	238
3	1211	.10	1		36	1246	, 7	135		68	1278	.967	302
4	1212	.043	335		37	1247	.771	180		69	1279		342
5	1213	.05			38	1248	Y	225		70	1280		198
6	1214	.057			39	OPEN			•	71	1281	T	238
7	1215	.063			40	1250	.771	315		72	1282	.98	302
ક	1216	.090			41	1251	j	0		73	1283		342
9	1217	.10) Y		42	1252	Y	135		74	1284		198
10	1220	.965	4 .38		43	1253	.932	180	ĺ	75	1285	7	238
11	1221	.975			44	1254	₩	225		76	1286	.994	302
12	1222	.985			45	OPEN				77	1287		342
13	1223	.995	 		46	1256	.932	315		78	1288		198
14	1224	.965	20	l	47	1257		0		79	1289	Ÿ	238
15	1225	.975			48	1258		45		80	1290	.12	76
16	1226	.985		Į	49	1259	Y	135		81	1291	.127	
17	1227	.995	Y		50	_260	.939	180		82	1292	. 134	
18	1228	.965	40		51	1261	1	225		83	1293	.173	1
19	1229	.970			52	OPEN				84	1300	.025	180
20	1230	.985			53	1263	.939	315		8.5	1302	.075	¥
21	1231	.995	7		54	1264		45		86	1305	.025	270
22	1232	.724	0		55	1265	7	135		87	1307	.075	#
23	1233	.724	225		56	1266	.953	138		88	1311	.025	0
24	OPEN				57	1267	+	162		89	1313	.075	5
25	1235	.724	315		58	1268	.967	138	ł	90	1314	.110	5
26	1236		330	[59	1269	+	162	İ	91	1316	.075	20
27	1237	7	135	Į	60	1270	.98	138	ł	92	1317	.090	20
28	1238	.74	180		61	1271	†	162		93	1318	.100	
29	1239	+	225		62	1272	.994	138		94	1319	.110	Y
20	OPEN				63 l	1273	†	1.62	1	95	1321	.075	35
31	1241	.74	315		64	1274	.953	302		96	1322	.110	₩
32	1242	J	0		65	1275	+	342		97	1323	.110	65
33	1243	1	135			ŀ	Ì			1	į	ŀ	
		1			1	[1	ſ		- 1	1	ſ	
_	*	. 1	l	1	I	ł	1	Į.	J	1	1	1	

Thermoccuples on the LEFT SRB (Channels 1-83), RIGHT SRB (Channels 84-97)

TABLE 1. Continued * LEFT AND RIGHT SRB

				7			THE DE		-,			·	
Ch. No.	T/C	X/L	¥		Ch No	T/C	X/L	ψ		C'n. No.	T/C	x/L	ψ
1	1324	.10	76		34	1383	.74	67.5		66	1418	.750	112.5
2	1326	.025	90		35	1384	.75			67	1420	.925	
3	1328	.06			36	1386	.141	76		68	1421	.932	1 1
4	1329	.075	Y		37	1387	.148			69	1422	.939	*
5	1330	.10	104		38	1388	.155	•	į	70	1423	.40	135
6	1332	.025	135		39	1389	.162			71	1425	.98	225
7	1334	.075			40	1390	.25	\		72	1426	.994	🕴
8	1335	.10	•		41	1393	.74	90		73	1430	.953	4.25
9	1336	.136	263		42	1394	.765	1		74	1431		15.6
10	1344	.939	†		43	1395	.771	}		75	1432		20
11	1345	.1.15	270		44	1396	.815]]	•	76	1433		24.4
12	1346	.136	277		45	1397	.837		1	77	1434		35.6
13	1347	.30			46	1398	.884			78	1435		40
14	1348	.75			47	1399	.894			79	1436	- ∜	77.5
15	1349	.815			48	1400	.907]]		80	1437	.967	
16	1350	.837		- 1	49	1401	.917			8 i	1438	.98	
17	1351	.884		- }	50	1402	.932			82	1439	.994	*
18	1352	.894			51	1403	.939	Y		83	1440	.953	112.5
19	1354	.939	43		52	1404	.120	104	1 1	84	1441	.967	
20	1355	.74	337.5		53	1405	.127			85	1442	.98	1 1
21	1356	.75	*	İ	54	1406	.134			86	1443	.994	Ψ]
22	1362	.765	0		55	1407	.141			87	1444	FWD	SEP
23	1363	.815			56	1408	. 148		1 1	88	1445	non	ORS
24	1364	.837			57	1409	.155			89	1446	Ì	
25	1365	.884		i	58	1410	.162			90	1447	- 1	
26	1366	.907	1		59	1411	.173			91	1448	ł	†
27	1368	.74	22.5		60	1412	.180		1	92	1294	.18	76
28	1369	.75			61	1413	. 186			93	1295	.186	1 1
29	1372	.925			62	1414	.193			94	1296	.193	
~)	1373	.932]	63	1415	.200			95	1297	.20	*
31	1374	.939	†		34	1416	.250	*		96			j
32	1375	.74	15		65	1417	.740	112.5		97		1	
33	1376	.75	†		ļ	I				l	ı	1	İ
			1		J	j						1	
	*The	 1	1		·				_	- 1	_ [
	1116	r moconb r	as on th	e RI	GHT :	SKB (Cha	nnels 1 33	-91), LI	OFT S	RB (Ch	annels	92-95) _	

TABLE 1. Continued RIGHT SRB

1 1449 FWD. SEP. MOTORS 34 1488 95 66 1353 .907 277 2 1450 36 1490 68 1356 .771 67 1357 .765 337 3 1451 36 1490 68 1358 .771 68 1359 .925 70 1360 .932 70 1360 .932 70 1360 .932 70 1360 .932 71 1361 .939 71 1361 .939 71 1361 .939 71 1361 .939 71 71 1361 .939 71 71 1361 .939 72 724 22 73 1370 .765 76 .724 22 73 1370 .765 45 74 1371 .771 77 10 1458 43 1497 75 1377 .765 45 45 1498 76 1378 .771 76 1379 .815 131 1461 1462 47 1299 .015 79	1		·							-				
2 1450 MOTORS 35 1489 112 67 1357 .765 337 31451 4 1452 37 1491 69 1359 .925 70 1360 .932 71 1455 40 1494 140 72 1367 .764 22 .724 23 .765 34 34 34 34 34 34 34 3		(11///	X/L	*			T/C	X/L	*			T/C	X/L	*
1451] ;	1449]	34	1488		95	7	66	1353	.907	277
4 1452 37 1491 69 1359 .925 7 1360 .932 7 1460 .932 7 1360 .932 7 1361 .939 Y 71 1361 .939 Y 71 1361 .939 Y 71 1361 .939 Y 71 1361 .939 Y 71 1361 .939 Y 71 1361 .939 Y 71 1361 .939 Y 71 1361 .939 Y 72 1367 .724 22 22 73 1370 .765 42 1496 1406 1494 1406 74 1371 .771 74 1371 .771 74 1371 .771 765 45 45 1499 150 77 1379 .815 131 1461 1466 1498 .008 180 .78 1380 .837 141 1462 74 1299 .015 79 1381 .884 1380 .837 1481 1466 .6 150 1303	2	1450	MOT	PRS	1	35	1489		112		67	1357	.765	337.5
5 1453 38 1492 70 1360 .932 71 1361 .939 71 1361 .939 71 1361 .939 71 1361 .939 71 1361 .939 71 1361 .939 72 1367 .724 22 .724 22 .73 1370 .765 .724 22 .73 1370 .765 .74 1371 .771 74 1371 .771 75 1377 .765 .45 .44 1498 76 1378 .771 .771 75 1377 .765 .45 .44 1498 76 1378 .771 <td< td=""><td>3</td><td>1451</td><td></td><td>1 </td><td></td><td>36</td><td>1490</td><td>}</td><td></td><td></td><td>68</td><td>1358</td><td>.771</td><td></td></td<>	3	1451		1		36	1490	}			68	1358	.771	
6 1454 39 1493 7 1435 140 1494 140 72 1367 .724 22 22 1367 .724 22 1367 .724 22 1367 .724 22 1367 .724 22 23 1370 .765 42 1496 74 1371 .771 74 1371 .771 74 1371 .771 74 1371 .771 77 1379 .815 1377 .765 45 44 1498 76 1378 .771 77 1379 .815 1377 .765 45 45 1498 150 77 1379 .815 1380 .837 14 1462 1463 .2 277 48 1301 .05 80 .382 .907 7 1378 .884 4 149 1303 .10 79 1381 .884 1884 1885 .771 67 .78 17 1465 .5 50 1304 .008 270 82 1391 .55 90 80<	4	1452				37	1491	Ì			69	1359	.925	
7 1455 8 1456 9 1457 10 1458 1456 11 1459 1457 12 1460 13 1461 1462 15 1463 15 1463 15 1464 16 16 16 16 16 16 16 16 16 16 16 16 16	5	14 53				38	1492	1			70	1360	.932	
8 1456 41 1495 73 1370 .765 1371 .771 10 1458 141 1496 74 1371 .771 17 12 1460 1459 44 1498 76 1378 .771 145 45 1499 150 77 1379 .815 1380 .837 1461 1462 1461 1462 147 1299 .015 77 1379 .815 1380 .837 1381 .884 1380 .837 1381 .884 1462 1463 .2 2777 48 1301 .05 80 7382 .907 1481 .884 1464 1499 .008 180 78 1381 .884 1380 .837 .837 .815 .838 .907 1481 .884 .907 1381 .884 .837 .907 1481 .884 .909 .909 .909 .909 .909 .909 .909 .909 .909 .909 .909 .909 .909 .909 .909 .909 .909	6	14 54	ì			39	1493	1		1	71	1361	.939	🔻
9 1457 10 1458 11 1459 1460 1458 11 1459 12 1460 1311 1461 1462 1463 1461 1465 15 1463 1464 1465 15 1465 15 1465 15 1466 16 1466 16 16 16 16	7	1455		1	1	40	1494	1	140		72	1367	.724	22.5
10 1458 43 1497 75 1377 .765 45 11 1459 44 1498 76 1378 .771 121 1460 150 77 1379 .815 .815 .771 1379 .815 .837 .815 .771 .815 .771 .815 .771 .815 .771 .815 .771 .815 .771 .815 .771 .815 .837 .771 .815 .837 .771 .815 .837 .907 .815 .837 .907 .91381 .884 .837 .907 .815 .837 .907 .815 .837 .907 .91381 .884 .837 .907 .816 .837 .907 .91381 .884 .837 .907 .91381 .884 .907 </td <td>8</td> <td>14 56</td> <td></td> <td></td> <td></td> <td>41</td> <td>1495</td> <td></td> <td></td> <td></td> <td>73</td> <td>1370</td> <td>.76ა</td> <td></td>	8	14 56				41	1495				73	1370	.76ა	
11 1459 44 1498 76 1378 .771 12 1460 45 1499 150 77 1379 .815 13 1461 46 1298 .008 180 78 1380 .837 14 1462 47 1299 .015 79 1381 .884 15 1463 .2 277 48 1301 .05 80 '382 .907 7 16 1464 .4 49 1303 .10 81 1385 .771 67 17 1465 .5 50 1304 .008 270 82 1391 .55 90 18 1466 .6 51 1306 .05 83 1392 .65 \$\frac{1}{4}\$ 19 1467 .7 52 1308 .10 84 1419 .771 112 .771 112 .771 112 .771 112 .771 112 .771 112 .771 .771 .771 .	9	1457				42	1496			1	74	1371	.771	Y
12 1460 45 1499 150 77 1379 .815 13 1461 46 1298 .008 180 78 1380 .837 14 1462 47 1299 .015 79 1381 .884 15 1463 .2 277 48 1301 .05 80 7382 .907 71 16 1464 .4 49 1303 .10 80 7382 .907 71 67 17 1465 .5 50 1304 .008 270 82 1391 .55 90 18 1466 .6 51 1306 .05 83 1392 .65 \$1 19 1467 .7 52 1308 .10 84 1419 .771 112 . 20 1468 .9 53 1309 .11 335 85 1424 .925 135 21 1469 .921 54 1310 .008 0 86 </td <td>10</td> <td>1458</td> <td></td> <td></td> <td></td> <td>43</td> <td>1497</td> <td></td> <td></td> <td></td> <td>75</td> <td>1377</td> <td>.765</td> <td>45</td>	10	1458				43	1497				75	1377	.765	45
13 1461 46 1298 .008 180 78 1380 .837 14 1462 47 1299 .015 79 1381 .884 15 1463 .2 277 48 1301 .05 80 '382 .907 16 1464 .4 49 1303 .10 81 1385 .771 67 17 1465 .5 50 1304 .008 270 82 1391 .55 90 18 1466 .6 51 1306 .05 83 1392 .65 19 1467 .7 52 1308 .10 84 1419 .771 112 . 20 1468 .921 53 1309 .11 335 85 1424 .925 135 21 1470 .928 263 57 1331 .008 <td>11</td> <td>1459</td> <td></td> <td></td> <td></td> <td>44</td> <td>1498</td> <td>}</td> <td>Y</td> <td></td> <td>76</td> <td>1378</td> <td>.771</td> <td></td>	11	1459				44	1498	}	Y		76	1378	.771	
14 1452 Y 47 1299 .015 79 1381 .884 15 1463 .2 277 48 1301 .05 80 '382 .907 Y 16 1464 .4 49 1303 .10 Y 81 1385 .771 67 .67 17 1465 .5 50 1304 .008 270 82 1391 .55 90 18 1466 .6 51 1306 .05 83 1392 .65 Y 19 1467 .7 52 1308 .10 Y 84 1419 .771 112 . 20 1468 .9 53 1309 .11 335 85 1424 .925 135 21 1469 .921 54 1310 .008 0 86 1472 .2 263 23 1471 .937 Y 56 1327 .04 Y 88 1474 .5	12	1460		1		45	1499		150		77	1379	.815	
15 1463 .2 277 48 1301 .05 80 .382 .907 7 16 1464 .4 49 1303 .10 7 81 1385 .771 67 17 1465 .5 50 1304 .008 270 82 1391 .55 90 18 1466 .6 51 1306 .05 83 1392 .65 1 19 1467 .7 52 1308 .10 7 84 1419 .771 112 20 1468 .9 53 1309 .11 335 85 1424 .925 135 21 1469 .921 54 1310 .008 0 86 1472 .2 263 22 1470 .928 263 57 1331 .008 135 89 1474 .5 1474 .5 1474 .5 1474 .5 1474 .5 1333 .05 90 1476 .7	13	1461			Ì	46	1298	.008	180		78	1380	.837	
16 1464 .4 .4 .4 .4 .10 .10 .81 .1385 .771 .67 .71 .67 .71 .67 .67 .71 .67 .67 .71 .67 .6	14	1452		Ÿ		47	1299	.015			79	1381	.884	
17 1465 .5 50 1304 .008 270 82 1391 .55 90 18 1466 .6 51 1306 .05 83 1392 .65 19 1467 .7 52 1308 .10 84 1419 .771 112 20 1468 .9 53 1309 .11 335 85 1424 .925 135 21 1469 .921 54 1310 .008 0 86 1472 .2 263 22 1470 .928 263 55 1325 .015 90 87 1473 .4 88 1474 .5 88 1474 .5 88 1475 .6 90 1476 .7 90 1476 .7 90 1476 .7 90 1476 .7 91 92 1476 .7 91 92 1476 .7 93 93 <	15	1463	.2	277		48	1301	.05			80	¹ 382	.907	Ÿ
18 1466 .6 .6 .6 .05 83 1392 .65 7 19 1467 .7 .7 .0 .05 84 1419 .771 112 .0 .0	16	14.64	.4			49	1303	.10	Ÿ		81	1385	.771	67.5
19 1467 .7 20 1468 .9 21 1469 .921 22 1470 .928 23 1471 .937 24 1477 .928 263 25 1480 27 1481 28 1482 29 1483 30 1484 31 1485 32 1486 33 1487	17	1465	.5			50	1304	.008	270		82	1391	.55	90
20 1468 .9 21 1469 .921 22 1470 .928 23 1471 .937 24 1477 .928 263 25 1479 .90 58 25 1479 .90 58 26 1480 27 1481 28 1482 29 1483 30 1484 31 1485 32 1486 33 1487	18	1466	.6			51	1306	.05		1 1	83	1392	.65	¥
21 1469 .921 54 1310 .008 0 86 1472 .2 263 22 1470 .928 55 1325 .015 90 87 1473 .4 23 1471 .937 56 1327 .04 7 88 1474 .5 24 1477 .928 263 57 1331 .008 135 89 1475 .6 25 1479 90 58 1333 .05 7 90 1476 .7 7 26 1480 1333 .05 91 92 1476 .7 91 28 1482 60 1338 .75 92 93 93 94 93 30 1484 95 63 1341 .864 95 96 97 31 1485 64 1342 .894 96 97 97 33 1486 1487 90 97 97 97 97	19	1467	.7			52	1308	.10	Ý	1 1	84	14 19	.771	112.5
22 1470 .928 3 1471 .937 1471 .937 1471 .928 263 55 1327 .04 1473 .4 1473 .4 1474 .5 1474 .5 1474 .5 1474 .5 1474 .5 1474 .5 1474 .5 1475 .6 1475 .6 1475 .6 1475 .6 1475 .6 1475 .6 1476 .7 7 1476 .7 90 1476 .7 90 1476 .7 90 1476 .7 90 1476 .7 90 1476 .7 90 1476 .7 90 1476 .7 90 1476 .7 91 92 93 94 93 94 93 94 95 93 94 95 96 97 95 96 97 96 97 97 96 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97<	20	1468	.9			53	1309	.11	335	1 1	8.5	1424	.925	135
23 1471 .937 \$\frac{1}{24}\$.937 \$\frac{1}{24}\$.928 263 56 1327 .04 \$\frac{1}{24}\$.88 1474 .5 1474 .5 1474 .5 1475 .6 1475 .6 1475 .6 1475 .6 1475 .6 1475 .6 1475 .6 1476 .7 \$\frac{1}{2}\$.7 .7 \$\frac{1}{2}\$.7 .7 \$\frac{1}{2}\$.7 .7 \$\frac{1}{2}\$.7	21	1469	.921			54	1310	300.	0		86	1472	.2	263
24 1477 .928 263 57 1331 .008 135 89 1475 .6 25 1479 90 58 1333 .05 90 1476 .7 26 1480 59 1337 .30 263 91 27 1481 60 1338 .75 92 28 1482 61 1339 .815 93 29 1483 62 1340 .837 94 30 1484 95 63 1341 .884 31 1485 64 1342 .894 32 1486 1343 .907 97	22	1470	.928	1 1		55	1325	.015	90		87	1473	.4	
25 1479 90 58 1333 .05 90 1476 .7 26 1480 59 1337 .30 263 91 27 1481 60 1338 .75 92 28 1482 61 1339 .815 93 29 1483 62 1340 .837 94 31 1485 63 1341 .884 32 1486 64 1342 .894 33 1487 70 70	23	1 1	ŀ	1	l	56	1327	.04	*		88	1474	.5	
26 1480 27 1481 28 1482 29 1483 30 1484 31 1485 32 1486 33 1487 38 1337 .30 263 91 60 1338 .75 92 61 1339 .815 93 62 1340 .837 94 63 1341 .884 95 64 1342 .894 96 7 97	24	1477	.928	263		57	1331	.008	135		89	1475	.6	
27 1481 28 1482 29 1483 30 1484 31 1485 32 1486 33 1487 30 1338 .75 61 1339 .815 62 1340 .837 63 1341 .884 95 64 1342 .894 85 1343 .907	25	1 1		90		58	1333	.05	Ť	1 1	90	1476	.7	Y
28 1482 29 1483 30 1484 31 1485 32 1486 33 1487 61 1339 .815 62 1340 .837 63 1341 .884 95 64 1342 .894 85 1343 .907	26		ļ	1 1		59	1337	.30	263		9ì		I	
29 1483 30 1484 31 1485 32 1486 33 1487 4 1342 1343 1343 1343 1343 1343 1343 1343 1343 1343 1343 1343 1343 1343 1343 1343 1343 1343 1343 1343 1343 1343 1343 1343 1343 1343 1343 1343 1343 1343 1343 1343 1343 1343 1343 1343 1343 1343 1343 1344 1343 1345 1343 1345 1343 1345 1343 1345 1343 1346 1343 1347 1343 1348 1343 1348 1343 1348 1343 1348 1343 1348 1343 1348 1343 1348 1343 1348 1343	27	1 1	- 1			60	1338	.75			92	- 1	1	
30 1484 31 1485 32 1486 33 1487 95 63 64 1342 894 95 96 96 97	28		į		İ	61	1339	.815			93	- {	- 1	
31 1485 32 1486 33 1487	29	1	!	7	- 1	62	1340	.837			94	1	i	
32 1486 33 1487	30		ļ	95		63		1			95		l	
33 1487	31	1				64					96	į		
	32					45	1343	.907	7		97			
	33	1487		7										
			<u>. </u>		L				, J	. L				

l

TABLE 1. Continued EXTERNAL TANK

	Ch. No.	T/C	X/L	θ		Ch . No .	T/C	X.'L	θ		Ch.	T/C	X/L	θ
	1	2089	.937	352.2		34	2120	.85	301.5		66	2152	.926	33.75
İ	2	2088		289.4		35	2121	.86			67	2153		31.75
	3	2087	*	250.6		36	2122	.87			68	2154	. 🗡	23.07
	4	2090	.355	29.8		37	2123	38.]		69	OPEN		
	5	2091	.360			38	2124	.89			70	OPEM		
-	6	2092	.365) <u> </u>		39	2125	.90	Į Y		71	OPEN		
-	7	2093	.370	7]	ı	40	OPEN	1			72	2158	. 326	355.2
-	8	2094	.355	23.08	ı	41	2127	.925	301.5		73	OF EN		
İ	9	2095	.36			42	2128	.935	ΙÝ		74	2160	.926	345.2
İ	10	2096	.365			43	2129	.82	292		75	2161		335
	11	2097	.37	Ä	J	44	2130	.83			76	2162		330 .2
	12	2098	.355	20.98		45	2131	.84			77	2163		326.9
	13	2099	.36			46	2132	85،			78	2164	*	324 .5
	14	2100	.365			47	2133	.86			79	OPEN		
	1.5	2101	37	*		48	2134	.87			80	2166	.441	31.43
	16	2102	.355	17		49	2135	.88			81	2167	.425	337.5
	17	OPEN	İ	1		50	2136	.89		į	82	2168		345.6
	18	2104	.40	330.2		51	2137	.91			83	2169		354
	19	2105	.405			52	2138	.926			84	2170		5.63
ĺ	20	2106	.41	Y		53	2139	.930			85	2171	*	17
1	21	2107	.40	326 .8	j	54	2140	.926	299 .4		86	2172	.430	337 .5
	22	2108	.405	Ý		55	2141		270	1	87	2173		345.5
	23	2109	.405	324.5	Ī	56	2142		258	-	88	2174		354
	24	2115	.41	+]		57	2143		250.6		89	2175		5.63
	25	2111	.41	315		58	2144	*	247.5		90	2176	1	17
	26	2112	.835	309.3		59	2145	.93	289.4		9i	6€1	.415	11.25
	27	2113	.820	305.4		60	2146		270		92	662	.42	
ĺ	28	2114	.830			61	2147		258	1	93	663	.425	
	29	2115	.835	7]		62	2148		250.6	1	94	664	.43	
1	30	2116	.820	301.5		63	2149	7	247.5		95	665	.44	
	31	2117	.830			64	2150	.935	270		96	6 66	.45	
1	32	2118	.835			65	2151	*	258		97	667	.455	7
	33	2119	.840	Y					1	ĺ				1
]		İ			İ		Ì				1	
L			<u>:</u>]		L	<u></u> L			5	. i_				

TABLE 1. Concluded EXTERNAL TANK

	<u></u>	-,	-		_			
	Ch. No.	T/C		X/L			9	
	1	668		.46		1	1 .	25
	Z.	669	-	.47				
	3	670		.48				-
	4	671	1	.49				1
	5	672	1	. 50	ì			ĺ
Ì	6	673		.60				-
ı	7	674	1	.70	-			Ì
ı	8	675	1	.80	-	,	Y	
	9	812	1	.40	-	2	58	
	10	813		.23		27	70	
	11	814		.24				
١	12	815	1	.25	1			1
İ	13	816	l	.27	1			ł
l	14	817		.29	1			1
l	15	818	l	.30	1			
l	16	819	l	.31				
ĺ	17	820	Ì	. 32	1			
	18	821	ı	.32	5			ı
ļ	19	822		.33				
	20	823	ĺ	.33	5			ï
l	21	824		.34				l
l	22	825	l	.345	•			
	33	826	l	.35				
	24	828	1	.36	ļ	-		
	25	829		.365				
	26	830		.37				
	27	831		.375				
	28	832		.38				
	29	833		.39				
	30	834		.40				
	31	835		. 5 0				
	32	836		.60				
	33	837		.70		*		
_			<u>.</u>					

		CONS	T	ANT S	E	. 2	22	}	
	h . Io .	T/C		X/ 1	ւ		θ		
3	14	838		.80)	2	270	?	_
3	5	839	• [.90)		¥		
3	6	840	ĺ	.23	3	29	92	. 5	į
3	7	841	-	25	,				
3	8	.2	1	.27			Ÿ		
3	9	873		.07	Ò	3	315	5	
4	0	874	-	.08	Ì		1		
4	1	875	Į	.10					ı
4	2	876		.15	.				
4	3	877		.20	1				
4	4	878		.35	. [I
4	5	879		.40	1				Ì
4	6	880		.50					l
4	7	881	l	. 55					ĺ
4	в	882	-	.60	1				İ
4	9	883		.65					
5	٥	884		.70					
5	1	885	ļ	.75	İ				
52	2	886		.80	ĺ			į	ı
53	3	887	1	.84	1	١			
54	1	933	l	.926	3	33	7 .	5	
55	5	934	Ì	.41	5	34	3.	1	
5€	3	935	l	.42					
57	,	936		.42					
58	3	937		.43				١	
59	ļ	938		.44				I	
60		939		.445		1		ı	
61		940		.45		- 1		ı	
62		941		.50	1	-		ı	
€3		942		.60		-		l	
64		943		.70					
65	i	944		.80		*		ı	
								ĺ	
		- (ı	

	_								_
•	Ch No		T/C		x/L			θ	
	66		945	5	.35	•	34	8	
	67		946	;	.36				
	68		947	'	.37				
	69		948		.37	5			
	70		949	,	.38				
	71		950)	.38	5			
	72	-	951	.	.39	1			
	73	Į	952		.39	5			
	74		953		.40				
	75	-	954		.40	5			
	76	-	955		.41				
	77	1	956	1	.41	5	-		
I	78		957		.42		ł		ı
l	79	1	958	1	.42				I
I	80		959		.43				
I	81	l	960		.44				
l	82		961		.44	\$	J		
l	83		962		.45		1		۱
١	84	ı	2072		.42		36	.32	4
l	85	l	2073	l	.425	Ż	1		l
l	86		2074	l	.43				I
l	87	1	2075	l	.435	1			١
l	88		2076	l	.45				l
l	89		2077		.60				l
	90		2078		.65		Y		
	91	:	2079		,2 5	:	33 .	75	ļ
	92		2080		.30	Ì			
	93	:	2081		.375	ľ			
	94	!	2082		.40			ł	
	95	:	2083		.43				
	96	:	2084		.45				
	97	:	2085		.60		*	ĺ	
			ļ						
_					1				
			•						

TEST DATA SUMMARY TABLE 2.

							DATA G	DATA GROUP NUMBERS	KBERS		-		
	MACH	, t	Α.				CONSTANT	ANT SET					
CONFIGURATION	NUMBER	deg	deg	111	122	133	211	222	233	311	322	333	411
നം	3.01	0	0	25	230	28	3	220	5				
	,		3	29	231	32	6		11				
			-3	33	232	35	12		13				
			5					224					
			-3;					225					
		5	0					226					
			5					227					
		•	-5					228					
		-5	0					122					
			5					222					
	-	•	-5					223					
37	4.02	0	0	47	4R	49	84	85	98				
			3	50	51	52	87	88	68	168	169	170	208
			-3					96		171	172	173	209
			4.5	53	2	55	06		16				
			-4.5	56	57	58	92		93				
			2					94					
			-5					95					
			7.5	59	9	61	Lô	101	66	174	175	176	ClE
			-7.5	63	64	65	100		102	177	178	179	211
								103	104				
•	••••		6-					105					

Table 2. Continued

								DATA GRO	GROTTE NITH	NITKRERS			
	MACH	σ.	ď					COMSTANT	- 4				
CONFIGURATION	NUMBER	deg	deg	111	122	133	211	222	10	311	322	333	411
OTS	4 .02	5	0					106					
	-		3	99	67	68	107	108	110	180	181	182	212
			-3					111		183	184	185	213
			4.5	69	70	7.1	112		135				
			-4.5	7.5	73	74	136		137				
			5					138					
			-5					139					
			7.5	75	92	77	141	142	143	186	187	188	214
-			-7.5	78	19	80	144	145	146	189	190	161	215
			6					147	148				
;		A	6-					149					
38		-5	0					114					
			3	153	154	155	115	116	117	192	196	197	216
			-3					118		198	193	200	217
			4.5	156	157	158	119		120				
			-4.5	159	160	161	121		122				
			ιγ					123					
-			-5					124					
			7.5	162	163	164	126	127	128	201	202	203	218
			-7.5	165	991	167	129	130	131	205	206	202	612
			6					132	133				
-	-		6-					134					

Table 2. Continued

														,				 	 ,		,		
																				i			
UMBERS	H																						
DATA GROUP NUMBERS	ANT SET	522	369	388	390	371	373	375	392	394	377	379	382	396	398	384	386						i
DATA G	CONSTANT	511 5	368 3		389 3			374 3	391 3	393 3	376 3	378 3	381 3	395	397	383	385						
		133	236	264	267	239	242	245	401	-	248	251	255			258	261						
		122	235	263	266	238	241	244	400		247	250	254			257	260						
		111	234	262	265	237	240	243	268 399	402	246	249	253			256	259						
	8.	deg	0	3	-3	5	-5	0	3	-3	2	-5	0	3	-3	သ	-5						
	g E		0	-	-		> -	5				•	-5										
	MACH	NUMBER	3.01														*						
		CONFIGURATION	Q														-						
	<u></u>												_ 3	9					 		~	·	

Ķ

Table 2. Concluded

							DA	DATA GROUP NUMBERS	P NUMBE	S3			
	MACH	, B	β,					CONSTANT	r ser				
CONFIGURATION	NUMBER	deg	deg	111	122	133	511	522					
or	4 .0;	0	0	270	271	272	323	324					
		-	3				364	365					
			-3				366	367					
•			5	273	274	275	325	326					
		-	-5	276	277	278	327	328					
		2	0	279	280	281	329	330					i
			3	232	283	284	331	332					
			-3	285	286	287	333	334					
			5	288	289	290	336	337					
		•	-5	162	292	293	338	341					
		-5	0	295	299	300	342	343					
			3	301	302	303	344	345					
			-3	314	315	316	346	347					
			5	218	318	319	348	349					
		-	-5	320	321	322	350	353					
	· · · · · · · · · · · · · · · · · · ·	-10	0	304	305	306	354	355					
		_	3				360	361	-		-		
- J			3				362	363			_		
			5	307	308	309	356	357		-		-	
		-	-5	310	311	312	358	359					1

Table 3. Equations for Calculating Local Surface Angle of Attack on the Orbiter Model

Orbiter Thermocouple Numbers	Equation for Calculating &
1 - 168 501 - 548	δ = λ + α _m
169 - 201 231 - 280	δ = λ - α _m
202 - 230 281 - 292 340 - 396	δ = λ + Yaw
293 - 339	δ = λ